
1

Teddywaddy Code Club

Activity 4h

Beginning Animation

G
ravity

2

Graphics Coding

This activity will introduce the concept of animation for a simple ball falling under gravity.

To begin this exercise,

create a new html file called canvas02.html

create a new css file called canvas02.css

create a new JavaScript files called canvas02.js

The HTML file.

The CSS file.

The initial JavaScript file will be similar to activity4g.

3

The JavaScript file.

This code doesn’t do anything yet but has a function for drawing a filled circle (or 2D ball)

on the canvas. The overall objective is to make the ball appear to be falling according to

gravity.

In graphics, animation is achieved primarily by redrawing the scene very quickly, with

some components of the scene moved slightly between redraws. This is just like a movie,

where each frame is a still image, but they are changed fast enough to look like motion.

In code, this generally involves using a loop to repetitively clear and redraw the scene

with some minor changes in between.

Most computers can now do this repetition a minimum of 60 times per second, which is

fast enough to look like animation.

One consequence of this it that as the scene becomes more complicated and takes longer

to draw, there is a limit to how much can be drawn before the next cycle. Some of this is

overcome by the use of specialist graphics hardware.

The main code, or

logic, goes here.

4

The high-level design of what is required.

Broadly the code must do this.

Set some values for,

• the initial position of the ball

• the initial speed of the ball

• the force of gravity

Then use a loop to,

• clear the scene

• draw the ball

• update the current position of the ball

Also, there will be some way to represents time (typically this is just a variable). Quite

often animations are run at real-time, so loop counters are actually using seconds (or

milliseconds) to count with.

Here’s a code block that could be used to set some initial values.

Before putting in the loop, examine the complete code below - just to draw one ball but

using all these variables.

Try to use meaningful names

for variables. And describe

blocks of code with comments.

You can also put comments at

the end of code lines.

5

Going back to the design, the animation loop needs to,

• clear the screen

• draw the ball

• update the ball position

Updating the ball position requires two steps,

• update the time

• calculate the new position from the time (Newton’s law)

This can be accomplished using the following function.

This is the code that needs to

become an animation loop. The

current position needs to change

each time the canvas is cleared

and redrawn.

6

Now the animation code could become just that shown below.

This still isn’t a loop, so the moveBall() function could be placed into a for loop.

However, the ball doesn’t appear to move although it is drawn in a different position. The

problem is that the for loop goes so fast that the ball is at the final position without being

able to see it move.

What is required is a loop that can repeat the moveBall() function at say 60 times per

second. Ideally though it would be good to be able to slow it down even more when

required, for testing and further code development.

For this, JavaScript has the setInterval() function.

The setInterval() function is defined like this.

setInterval(function, delay)

• function is whatever function you want called repeatedly - like moveBall()

• delay is the time between calls, in mS

7

The way setInterval() works is a subtle yet very important aspect of JavaScript. JavaScript

is an asynchronous language such that many blocks of code can be happening at the

same time. This won’t impact the code in this activity, but does change some aspects of

coding in JavaScript.

To get the animation happening now is relatively simple.

The ball will now fall according to the equations of motion. The ball does continue on

past the canvas. To stop the ball at the canvas boundary, use an if test to stop the timer.

If the ball is given some horizontal velocity as well, then the ball might hit the right-hand

side of the canvas before the bottom, so the if test would need to test both possibilities.

• A much smaller number for the timeIncrement variable will give a smoother

animation.

• Try adding some initial x velocity.

• Try changing the starting position.

• What code would need to be changed to make the ball bounce?

• The dimensions of the canvas shouldn’t be “hard-coded” as numbers (500), they

should be variables and should also be requested using a function call.

Try updating the code with these variables and making the canvas bigger.

Add this line of code at the end of the

moveBall() function to stop the animation.

This variable could also be declared

with the other global variables.

